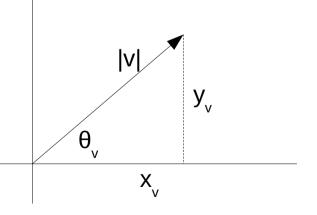
Computational Geometry

Ulrik de Muelenaere

IOI Camp 2 April 2015

- Will be working in 2D
- Vector **v** has magnitude $|\mathbf{v}|$ and direction $\boldsymbol{\theta}_{\mathbf{v}}$
- Components: $x_v = |v| \cos \theta_v$, $y_v = |v| \sin \theta_v$
- Typically stored as $(\mathbf{x}_v, \mathbf{y}_v)$
- Calculate magnitude:

$$|v| = \sqrt{x_v^2 + y_v^2}$$

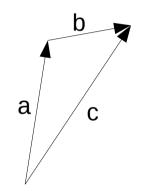


$$c = a + b$$

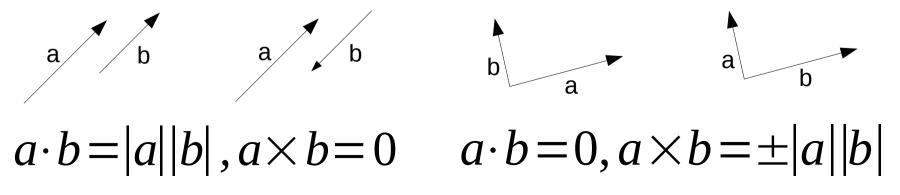
- Place start of b at end of a
- Connect start of a to end of b
- Also works with components:

$$a+b=(x_a+x_b, y_a+y_b)$$
$$a-b=(x_a-x_b, y_a-y_b)$$

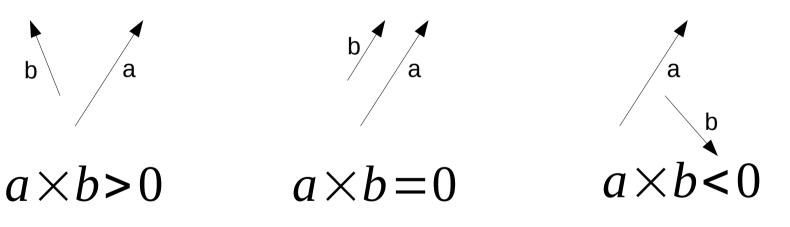
With points A and B, B – A is vector from A to B



- Dot product: $a \cdot b = |a| |b| \cos \theta = x_a x_b + y_a y_b$
- Dot product is scalar, not vector
- Cross product: $a \times b = |a| |b| \sin \theta = x_a y_b x_b y_a$
- 3D vector in z direction, so use as scalar
- Find properties of angle **θ** between vectors:



- $\boldsymbol{\theta}$ is angle from \boldsymbol{a} to \boldsymbol{b} $a \times b = |a||b|\sin(\theta) = -|b||a|\sin(-\theta) = -b \times a$
- Find direction of $\boldsymbol{\theta}$ by looking at sign of $\mathbf{a} \times \mathbf{b}$



Cross product is area of parallelogram
a

h

а

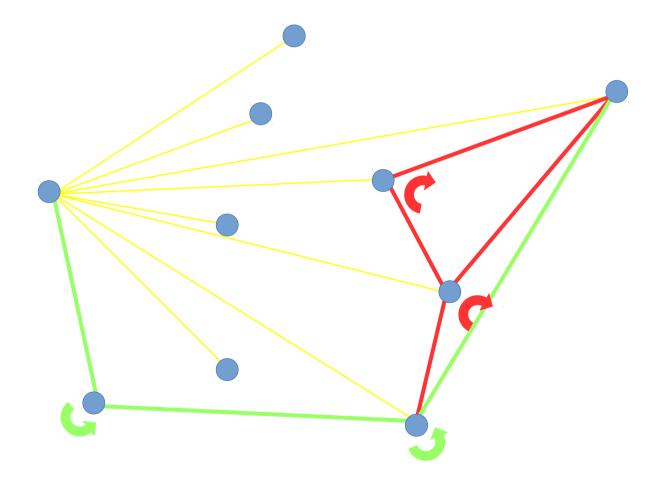
Convex hull

- Smallest convex polygon enclosing set of points
- Graham scan runs in O(n log n) or O(n) if already sorted
- Pick extreme, e.g. leftmost, point **p**₀
- Sort other points based on angle of line from \boldsymbol{p}_{0} to point
- Add each point then check if previous must be removed

Convex hull

- Use integers instead of floating point
- If \boldsymbol{p}_{0} is leftmost point, can sort by slope instead of angle
- Slope of line from \mathbf{p}_0 to \mathbf{p}_i is: $\frac{y_i y_0}{x_i x_0} = \frac{n_i}{d_i}, d_i > 0$
- Compare slopes: $\frac{n_i}{d_i} < \frac{n_j}{d_i}$
- Since \mathbf{d}_i , $\mathbf{d}_j > 0$, equivalent to: $n_i d_j < n_j d_i$

Convex hull



Line sweep

- Find all intersections of line segments
- Compare each line to every other O(n²)
- Sweep vertical line from left to right, looking for intersections O(n log n)
- Define event as x-value where something happens
- Move line from one event to next

Line sweep

- Keep track of horizontal segments intersecting sweep line in set ordered by y-value
- 3 types of events:
- → Start of horizontal segment add to set
- End of horizontal segment remove from set
- Vertical segment find intersecting segments in set

Lines

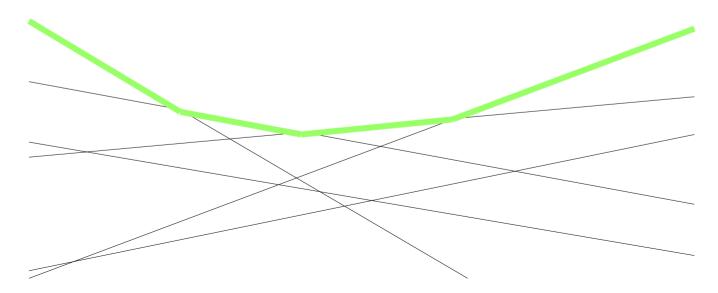
• Various forms of equations:

$$a x+b y=c$$
 $y=m x+k$ $y=-\frac{a}{b}x+\frac{c}{b}$

- To find equation given 2 points, solve: $y_1 = m x_1 + k$, $y_2 = m x_2 + k$
- To find intersection of lines (if $\mathbf{m_1} \neq \mathbf{m_2}$), solve: $y=m_1 x+k_1, y=m_2 x+k_2$ $x=\frac{k_1-k_2}{m_2-m_1}=\frac{k_2-k_1}{m_1-m_2}$

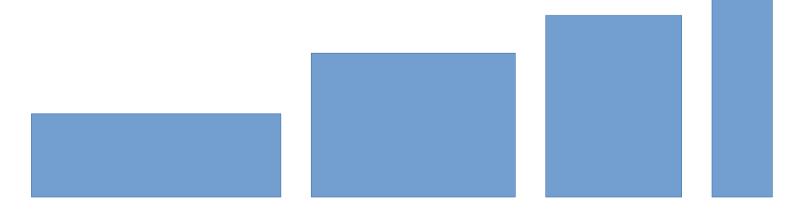
- Optimisation for dynamic programming algorithms
- Consider set of lines $y = m_i x + k_i$
- Queries to find maximum (or minimum) y of any line at specific x
- Could try all lines O(n)
- Trick allows adding line in O(1) or O(log n) and queries take O(log n)

- Only keep track of lines that are maximum over some interval
- Order lines by this interval
- Query performs binary search



- Note that slope increases with increasing **x**
- If each line has greater slope than previous lines, can add to end (similar if slope decreasing)
- If intersection with previous line before start of previous line's interval, remove previous line and check new previous line
- If slopes not increasing, add line to set and check if new, previous or next line should be removed

- Consider sequence of rectangles in order of increasing height h_i and decreasing width w_i
- Subsequence [i, j] has cost w_i h_j
- Partition sequence into subsequences to minimize total cost



- Let $\mathbf{c}_{\mathbf{i}}$ be minimum cost of first \mathbf{i} rectangles, with $c_0 = 0$
- For $\mathbf{c}_{\mathbf{i}}$, last subsequence must be $[\mathbf{j} + 1, \mathbf{i}]$ with $0 \leq \mathbf{j} < \mathbf{i}$
- Therefore $C_i = \min_{0 \le j < i} \{ c_j + w_{j+1} h_i \}$
- This is the minimum at h_i of a set of lines with yintercept c_j and slope w_{j+1} , which is decreasing