Computational Geometry

Ulrik de Muelenaere
IOI Camp 2
April 2015

Vectors

- Will be working in 2D
- Vector \mathbf{v} has magnitude $|\mathbf{v}|$ and direction $\boldsymbol{\theta}_{\mathbf{v}}$
- Components: $x_{v}=|v| \cos \theta_{v}, y_{v}=|v| \sin \theta_{v}$
- Typically stored as $\left(\mathbf{x}_{\mathrm{v}}, \mathbf{y}_{\mathrm{v}}\right)$
- Calculate magnitude:

$$
|v|=\sqrt{x_{v}^{2}+y_{v}^{2}}
$$

Vectors

$$
c=a+b
$$

- Place start of \mathbf{b} at end of \mathbf{a}

- Connect start of \mathbf{a} to end of \mathbf{b}
- Also works with components:

$$
\begin{aligned}
& a+b=\left(x_{a}+x_{b}, y_{a}+y_{b}\right) \\
& a-b=\left(x_{a}-x_{b}, y_{a}-y_{b}\right)
\end{aligned}
$$

- With points \mathbf{A} and $\mathbf{B}, \mathbf{B}-\mathbf{A}$ is vector from \mathbf{A} to \mathbf{B}

Vectors

- Dot product: $a \cdot b=|a||b| \cos \theta=x_{a} x_{b}+y_{a} y_{b}$
- Dot product is scalar, not vector
- Cross product: $a \times b=|a||b| \sin \theta=x_{a} y_{b}-x_{b} y_{a}$
-3D vector in z direction, so use as scalar
- Find properties of angle $\boldsymbol{\theta}$ between vectors:

$$
a \cdot b=|a||b|, a \times b=0 \quad a \cdot b=0, a \times b= \pm|a||b|
$$

Vectors

- $\boldsymbol{\theta}$ is angle from \mathbf{a} to \mathbf{b}

$$
a \times b=|a||b| \sin (\theta)=-|b||a| \sin (-\theta)=-b \times a
$$

- Find direction of $\boldsymbol{\theta}$ by looking at sign of $\mathbf{a} \times \mathbf{b}$
$a \times b>0 \quad a \times b=0 \quad a \times b<0$
- Cross product is area of parallelogram

Convex hull

- Smallest convex polygon enclosing set of points
- Graham scan runs in $O(\mathbf{n} \log \mathbf{n})$ or $\mathrm{O}(\mathbf{n})$ if already sorted
- Pick extreme, e.g. leftmost, point \mathbf{p}_{0}
- Sort other points based on angle of line from \mathbf{p}_{0} to point
- Add each point then check if previous must be removed

Convex hull

- Use integers instead of floating point
- If p_{0} is leftmost point, can sort by slope instead of angle
- Slope of line from $\mathbf{p}_{\mathbf{0}}$ to $\mathbf{p}_{\mathbf{i}}$ is: $\frac{y_{i}-y_{0}}{x_{i}-x_{0}}=\frac{n_{i}}{d_{i}}, d_{i}>0$
- Compare slopes: $\frac{n_{i}}{d_{i}}<\frac{n_{j}}{d_{j}}$
- Since $\mathbf{d}_{\mathbf{i}}, \mathbf{d}_{\mathbf{j}}>0$, equivalent to: $n_{i} d_{j}<n_{j} d_{i}$

Convex hull

- Find all intersections of line segments
- Compare each line to every other - $O\left(n^{2}\right)$
- Sweep vertical line from left to right, looking for intersections - O(n log n)
- Define event as x-value where something happens
- Move line from one event to next
- Keep track of horizontal segments intersecting sweep line in set ordered by y-value
- 3 types of events:
\rightarrow Start of horizontal segment - add to set
\rightarrow End of horizontal segment - remove from set
\rightarrow Vertical segment - find intersecting segments in set
- Various forms of equations:

$$
a x+b y=c \quad y=m x+k \quad y=-\frac{a}{b} x+\frac{c}{b}
$$

- To find equation given 2 points, solve:

$$
y_{1}=m x_{1}+k, y_{2}=m x_{2}+k
$$

- To find intersection of lines (if $\mathbf{m}_{1} \neq \mathbf{m}_{\mathbf{2}}$), solve:

$$
\begin{aligned}
& y=m_{1} x+k_{1,} y=m_{2} x+k_{2} \\
& x=\frac{k_{1}-k_{2}}{m_{2}-m_{1}}=\frac{k_{2}-k_{1}}{m_{1}-m_{2}}
\end{aligned}
$$

Convex hull trick

- Optimisation for dynamic programming algorithms
- Consider set of lines $y=m_{i} x+k_{i}$
- Queries to find maximum (or minimum) y of any line at specific x
- Could try all lines - O(n)
- Trick allows adding line in $\mathrm{O}(1)$ or $\mathrm{O}(\log \mathbf{n})$ and queries take $\mathrm{O}(\log \mathbf{n})$

Convex hull trick

- Only keep track of lines that are maximum over some interval
- Order lines by this interval
- Query performs binary search

Convex hull trick

- Note that slope increases with increasing \mathbf{x}
- If each line has greater slope than previous lines, can add to end (similar if slope decreasing)
- If intersection with previous line before start of previous line's interval, remove previous line and check new previous line
- If slopes not increasing, add line to set and check if new, previous or next line should be removed

Convex hull trick

- Consider sequence of rectangles in order of increasing height $\mathbf{h}_{\mathbf{i}}$ and decreasing width $\mathbf{w}_{\mathbf{i}}$
- Subsequence $[\mathbf{i}, \mathbf{j}]$ has cost $\mathbf{w}_{\mathbf{i}} \mathbf{h}_{\mathrm{j}}$
- Partition sequence into subsequences to minimize total cost

Convex hull trick

- Let $\mathbf{c}_{\mathbf{i}}$ be minimum cost of first \mathbf{i} rectangles, with

$$
c_{0}=0
$$

- For $\mathbf{c}_{\mathbf{i}}$, last subsequence must be $[\mathbf{j}+1, i]$ with $0 \leq j<i$
- Therefore $c_{i}=\min _{0 \leq j<i}\left\{c_{j}+w_{j+1} h_{i}\right\}$
- This is the minimum at \mathbf{h}_{i} of a set of lines with y intercept $\mathbf{c}_{\mathbf{j}}$ and slope $\mathbf{w}_{\mathbf{j}+1}$, which is decreasing

